The Raman Spectra of Cobalt(III) Complexes. IV. Differentiation between cis and trans Isomers of Bis(trimethylenediamine)cobalt(III) Complexes

Kan Kanamori,* Hiroko Ichinose, and Kiyoyasu Kawai

Department of Chemistry, Faculty of Science, Toyama University, Gofuku, Toyama 930 (Received June 19, 1981)

Synopsis. The Raman and the infrared spectra of bis(trimethylenediamine)cobalt(III) complexes have been studied to establish a definite distinction between the cis and trans isomers. A differentiation between the isomers can be made on the bases of the number of the Raman bands in the region of 480—550 cm⁻¹ and of the mutual exclusion in the region of 400—500 cm⁻¹.

In the previous paper,¹⁾ the Raman criterion has been established for differentiating cis and trans isomers of bis(ethylenediamine)cobalt(III) complexes. Many infrared studies²⁻⁶⁾ have been done on the stereochemistry of bis(ethylenediamine)cobalt(III) complexes, but few vibrational studies of bis(trimethylenediamine)cobalt(III) complexes have been reported. Kawaguchi and Kawaguchi⁷⁻⁹⁾ have applied Baldwin's criteria⁵⁾ and Hughes and McWhinnie's criteria⁶⁾ for bis(ethylenediamine)cobalt(III) complexes to isomeric pairs of bis(trimethylenediamine)cobalt(III) complexes. They have noted that the former criteria have not been useful for [Co(NCS)₂(tn)₂]Cl and [Co(N₃)₂(tn)₂]NO₃, and the latter were not useful for [Co(CN)(SO₃)(tn)₂].

In the present work, we tried to establish vibrational criteria for differentiating cis and trans isomers of bis-(trimethylenediamine)cobalt(III) complexes on the basis of the Raman and the infrared spectra. The established criteria were then applied to the isomeric pair of $[Co(NH_3)_2(tn)_2]Cl_3$ obtained in the present work.

Experimental

Preparation. Isomeric Pair of $[Co(NH_3)_2(tn)_2]Cl_3$: This complex has been obtained by Ogino¹⁰ through the reaction of $[Co(NH_3)_5(H_2O)]^{3+}$ with trimethylenediamine, but he did not refer to its geometrical configuration. We have prepared the isomeric pair by two methods.

Method I. Powdered trans-[CoCl₂(tn)₂]Cl (5 g) was dissolved in 100 cm³ of liquid ammonia. The ammonia was then allowed to evaporated spontaneously, leaving behind an orange powder. This powder was washed with a large amount of ethanol and dissolved in a minimum amount of warm water, then the solution was cooled in a refrigerator. The reddish orange precipitate (isomer I) was filtered and dried. The other isomer was obtained by adding a large amount of ethanol to the filtrate as an orange powder (isomer II). Yields: isomer I: 1.5 g; isomer II: 0.3 g.

Method II. Powdered trans-[CoCl₂(tn₂)]Cl (5 g) was dissolved in 200 cm³ of methanol which was saturated with ammonia. The solution was warmed on a water bath for 5 min. The orange powder which deposited was filtered and washed with ethanol. The same compounds as those obtained by method I were isolated by a fractional crystallization, but the ratio of the yields was reversed. Yields: isomer I: 0.7 g; isomer II: 2.5 g. Found: C, 19.16; H, 8.15; N, 22.45% for isomer I. C, 19.18; H, 8.07; N, 22.46% for isomer II. Calcd for [CoC₆H₂₆N₆]Cl₃·1.5H₂O: C, 19.24; H, 7.81; N, 22.45%.

Isomeric Pair of $[Co(NO_2)_2(tn)_2]Cl$: This isomeric pair was first obtained by Kawaguchi and Kawaguchi.^{7,8)} Later, Celap et al.¹¹⁾ have prepared it by different methods; they have shown that the property of the cis isomer is different from that obtained by Kawaguchi and Kawaguchi.⁸⁾ We have prepared the isomeric pair from the reaction mixture obtained by Kawaguchi's method⁷⁾ for the trans isomer by using an ion-exchange column chromatography (SP-Sephadex, C-25; ϕ 30 mm × 500 mm; eluent-0.04 mol/dm³ KCl solution). The electronic spectrum of each isomer obtained by this method is identical with that of respective isomer observed by Celap et al.¹¹⁾

Other Complexes. All the other complexes were obtained by the method of Kawaguchi and Kawaguchi.⁷⁻⁹)

Measurements. The Raman spectra were recorded on a JASCO R-800 Laser Raman spectrometer, using a He-Ne (632.8 nm) or an Ar⁺ ion (514.5 nm) laser as an excitation source. The infrared spectra were recorded on a JASCO A-3 spectrometer. The observed frequencies were calibrated by the 533.8 cm⁻¹ band of indene for the Raman spectra and the 618.0 cm⁻¹ band of polystylene film for the infrared spectra. The observed frequencies are accurate within ± 2 cm⁻¹.

Results and Discussion

The most consistent variation between the vibrational spectra of cis and trans isomers has been found in the region of 400—550 cm⁻¹. The Raman and the infrared spectra in this region for the cis and trans isomeric pair of bis(trimethylenediamine)cobalt(III) complexes are shown in Fig. 1 and those of other trans isomers are in Fig. 2. The very strong Raman bands at ca. 450 cm⁻¹ can be confidently assigned to the Co-N(tn) stretching mode, ν (Co-N(tn)), by comparison with the Raman

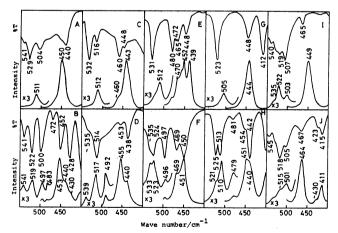


Fig. 1. The Raman and the infrared spectra of the isomeric pair of $[Coab(tn)_2]X$ -type complexes. A(trans) and B(cis); $a=b=CN^-$, $X=Cl^-$. C(trans) and D(cis); $a=b=NO_2^-$, $X=Cl^-$. E(trans); $a=b=NCS^-$, $X=Br^-$. F(cis); $a=b=NCS^-$, $X=Cl^-$. G(trans) and H(cis); $a=b=N_3^-$, $X=NO_3^-$. I(trans) and J(cis); $a=cN^-$, $b=SO_2^{2-}$.

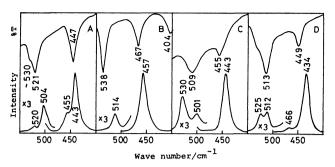


Fig. 2. The Raman and the infrared spectra of trans-[Coab(tn)₂]X-type or M[Coab(tn)₂]-type complexes. A; $a=b=Cl^-$, $X=Cl^-$. B; $a=b=NO_3^-$, $X=NO_3^-$, C; $a=b=SO_3^{2-}$, $M=Na^+$. D; $a=Cl^-$, $b=SO_3^{2-}$.

spectra of bis(ethylenediamine)cobalt(III) complexes.¹⁾ Therefore, the infrared bands in the vicinity of 450 cm⁻¹ may be assigned to the $\nu(\text{Co-N(tn)})$, though Kawaguchi and Kawaguchi^{8,9)} have regarded the infrared bands in the region of 500—550 cm⁻¹ as the $\nu(\text{Co-N(tn)})$. The bands in the region of 480—550 cm⁻¹ are assignable to the deformation vibration of the chelate ring, $\delta(\text{CCN})$, by considering the assignment for ethylenediamine complexes based on the normal coordinate analysis.¹²⁾

It can be seen from Figs. 1 and 2 that the trans isomers generally show one band due to δ (CCN) in the 480—550 cm⁻¹ region of the Raman spectra and also in the infrared region. Further, the mutual exclusion between the Raman and the infrared spectra occurs, as expected from the approximate symmetry (D_{2h}) of the trans isomers. All the cis isomers have at least two bands in the 480-550 cm⁻¹ region of the Raman spectra and most bands have their counterparts in the infrared spectra. Thus a complex which has one band in the Raman spectra and/or in the infrared spectra of 480— 550 cm⁻¹ region can be unambiguously assigned to the trans isomer. In the sulfito-containing complexes, the band due to the degenerate bending of the sulfito group, $\delta_{\rm d}({\rm SO_3})$, obscured the band due to the $\delta({\rm CCN})$, so this region is not helpful for structural diagnosis. Forbidden vibrations under the assumption of a D_{2h} symmetry appear as a very weak band in the infrared spectrum of the trans-dinitro complex and in the Raman spectrum of the trans-dichloro complex, but the mutual exclusion approximately holds between the strongest band of the Raman spectrum in the 480-550 cm⁻¹ region and that of the infrared one in the same region, in contrast to the cis isomers. The bands in the region of 460—480 cm⁻¹ for the bis(isothiocyanato)complexes can be assigned to the $\delta(NCS)$.

The mutual exclusion generally holds also in the region of the $\nu(\text{Co-N}(\text{tn}))$ of the trans isomers (see Figs. 1 and 2). This criterion can be used even for the sulfito-containing complexes. But in the trans-dinitro and the trans-diazido complexes, the mutual exclusion does not hold. This may be interpreted as a symmetry lowering in the solid state or as an accidental degeneracy.

In conclusion, three criteria for differentiating the geometrical isomers of bis(trimethylenediamine)cobalt-(III) complexes are established: the first is based on the

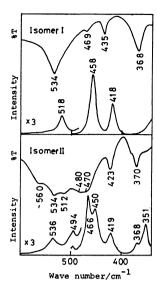


Fig. 3. The Raman and the infrared spectra of the isomeric pair of [Co(NH₃)₂(tn)₂]Cl₃.

number of bands in the region of $480-550 \,\mathrm{cm^{-1}}$, the second on the mutual exclusion in the same region, and the last on the mutual exclusion in the $\nu(\mathrm{Co-N(tn)})$ region. But each criterion has some exceptions, so only a combination of the three criteria would provide reliable diagnosis.

These criteria were applied to the isomeric pair of $[Co(NH_3)_2(tn)_2]Cl_3$. The Raman and the infrared spectra of the isomers are shown in Fig. 3. It is clear that isomer I has a *trans* configuration and isomer II has a *cis* configuration.

We wish to express our sincere thanks to Professor Yoichi Shimura of Osaka University, and to Dr. Isao Kanesaka for valuable discussions. We also thank Miss Naomi Shimizu for carrying out a part of the experiment

References

- 1) K. Kanamori and K. Kawai, Bull. Chem. Soc. Jpn., 53, 2520 (1980).
- 2) M. M. Chamberlain and J. C. Bailar, Jr., J. Am. Chem. Soc., 81, 6412 (1959).
- 3) P. E. Merritt and S. E. Wiberley, J. Phys. Chem., 59, 55 (1959).
- 4) M. L. Morris and D. H. Busch, J. Am. Chem. Soc., 82, 1521 (1960).
 - 5) M. E. Baldwin, J. Chem. Soc., 1960, 4369.
- 6) M. N. Hughes and W. R. McWhinnie, J. Inorg. Nucl. Chem., 28, 1659 (1966).
- 7) H. Kawaguchi, T. Yano, and S. Kawaguchi, Bull. Chem. Soc. Jpn., 42, 136 (1969).
- 8) H. Kawaguchi and S. Kawaguchi, *Bull. Chem. Soc. Jpn.*, **43**, 2103 (1970).
- 9) H. Kawaguchi and S. Kawaguchi, *Bull. Chem. Soc. Jpn.*, **46**, 3453 (1973).
- 10) H. Ogino, Bull. Chem. Soc. Jpn., 50, 2459 (1977).
- 11) M. B. Celap, M. J. Malinar, and P. N. Radivojsa, Inorg. Chem., 14, 2965 (1975).
- 12) Y. Omura, I. Nakagawa, and T. Shimanouchi, Spectrochim. Acta, Part A, 27, 2227 (1971).